Entry tags:
ИИ и формализмы
"Transformers Can Do Arithmetic with the Right Embeddings"
https://neurips.cc/virtual/2024/poster/94565
LLMов научили арифметике, как я понимаю, через специальное кодирование чисел. Это интересный трюк, поскольку у обычных ЛЛМов даже счет не получается, и да у людей научиться арифмерике занимает годы. Так что интересно с точки зрения понимания, как оно работает.
Но одновременно у меня возникает вопрос (который, как оказалось, авторам этой бумаги в голову не пришел): накойхер их учить арифмерике, если у них есть под боком компьютер, который может посчитать все то же самое легко и эффективно? Гораздо более продуктивным занятием было ты научить ЛЛМы пользоваться калькулятором. В простейшем варианте, добавить поспроцессинг к выводу ЛЛМа, который выцепит и выполнит вычислительные инструкции, и научить ЛЛМ генерить эти инструкции. Ну вот например, недавно народ активно рассуждал про "посчитать буквы r в слове strawberry". Это задание можно поделить на две части: (1) выцепить буквы r, (2) посчитать их. ИИ мог бы генерить что-то типа
$(wc r r r)
и получить на выходе 3. Ну и то же самое с любой арифметикой.
Интересно, какие возражения такая идея вызывает у учоных: "но ведь разрешать выполнение питонного кода из вывода - небезопасно". То, что можно сделать не Питон, а любой свой безопасный язык, им просто в голову не приходит. На лицо еще один признак большого разрыва между Машинными Учоными и Компьюторными Учоными.
А вот еще интересен такой момент: я спрашивал в разных местах, и у всех генерация машинного кода искусственным интеллектом просиходит совершенно от балды этого ИИ. Но ведь машинный код - формальный язык. Грамматика и семантика его известна. Ничего не мешает генерировать сразу согласно грамматике - проверять каждую следующую лексему на соответствие грамматике, и если соответстие не найдено, то ее отбрасывать и выбирать другую, следующую по весу. Может полученный код и не будет правильно работать, но как минимум всегда будет соответствовать грамматике, и с небольшими дополнительными проверками - компилироваться. В одном из мест я видел примеры кода, сгенерированного моделями различной сложности, с качеством, растущим со сложностью модели. Но простая формальная проверка должна поднять качество кода, сгенерированного даже простыми моделями.
https://neurips.cc/virtual/2024/poster/94565
LLMов научили арифметике, как я понимаю, через специальное кодирование чисел. Это интересный трюк, поскольку у обычных ЛЛМов даже счет не получается, и да у людей научиться арифмерике занимает годы. Так что интересно с точки зрения понимания, как оно работает.
Но одновременно у меня возникает вопрос (который, как оказалось, авторам этой бумаги в голову не пришел): накойхер их учить арифмерике, если у них есть под боком компьютер, который может посчитать все то же самое легко и эффективно? Гораздо более продуктивным занятием было ты научить ЛЛМы пользоваться калькулятором. В простейшем варианте, добавить поспроцессинг к выводу ЛЛМа, который выцепит и выполнит вычислительные инструкции, и научить ЛЛМ генерить эти инструкции. Ну вот например, недавно народ активно рассуждал про "посчитать буквы r в слове strawberry". Это задание можно поделить на две части: (1) выцепить буквы r, (2) посчитать их. ИИ мог бы генерить что-то типа
$(wc r r r)
и получить на выходе 3. Ну и то же самое с любой арифметикой.
Интересно, какие возражения такая идея вызывает у учоных: "но ведь разрешать выполнение питонного кода из вывода - небезопасно". То, что можно сделать не Питон, а любой свой безопасный язык, им просто в голову не приходит. На лицо еще один признак большого разрыва между Машинными Учоными и Компьюторными Учоными.
А вот еще интересен такой момент: я спрашивал в разных местах, и у всех генерация машинного кода искусственным интеллектом просиходит совершенно от балды этого ИИ. Но ведь машинный код - формальный язык. Грамматика и семантика его известна. Ничего не мешает генерировать сразу согласно грамматике - проверять каждую следующую лексему на соответствие грамматике, и если соответстие не найдено, то ее отбрасывать и выбирать другую, следующую по весу. Может полученный код и не будет правильно работать, но как минимум всегда будет соответствовать грамматике, и с небольшими дополнительными проверками - компилироваться. В одном из мест я видел примеры кода, сгенерированного моделями различной сложности, с качеством, растущим со сложностью модели. Но простая формальная проверка должна поднять качество кода, сгенерированного даже простыми моделями.
no subject
Смысл не в том, чтоб научить LLM совершать арифметические операции. Это умеет делать даже механический арифмометр.
Смысл в том, чтобы LLM научилась этому самостоятельно. В этом преимущество нового поколения reasoning моделей вроде DeepSeek r1. У них умение мыслить логически появилось само по себе, в результате тренировки, а не было заранее запрограммировано человеками.
При разговоре с r1 видно, как оно думает, можно отследить логическую цепочку мыслей. Даже когда оно ошибается, эти ошибки не такие, как раньше, где просто слова брались явно от балды. Может сказать "я не знаю", может зациклиться в рассуждениях и не найти ответа, как человек.
no subject
no subject
На практике я не буду просить ChatGPT что-то посчитать, потому что ему нельзя доверять, и потому что мне быстрее посчитать в экселе или на калькуляторе.